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Employing Poincar6 degrees of freedom M jk = ( K, J)  and p k = ( E, aft) transfor- 
ming linearly (but inhomogeneously) under the action of the Poincar~ group we 
define a number of quantities which we later identify with physical observables. 
The identifications are consistent with the nonrelativistic limit and with other 
requirements following from the Poincar~ eovariance. Next, we treat a free 
relativistic particle as composed of two interacting parts. Relativistic quantum 
commutation relations for their Poincar~ algebras and a kind of (inverse) 
relativistic correspondence principle are used to generate (quasi-) classical 
equations of their relative motion. A simple example based on these ideas is 
explicitly solved. 

1. INTRODUCTION 

In this paper we intend to discuss kinematics and dynamics of 
relativistic (quasi-) classical systems. Any such particle I (system) is char- 
acterized by its degrees of freedom. Position coordinates associated with a 
particle are usually assumed to constitute the three-vector part of a 
four-vector in a preexisting Minkowski space. _The remaining degrees of 
freedom such as the total angular momentum J, the linear momentum if, 
the energy /~, etc., are introduced separately. The connection between 
these, so to speak, internal degrees of freedom and a position vector /~ 
associated with the particle is imposed by the relation 

def r  d / ~  

ff = E = d T  (1.1) 

] In this paper we use the word "particle" in a very general sense. It stands for any physical 
system which can be given an identity. 
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where (cT, R) constitutes a "position" four-vector in the preexisting 
Minkowski space. 

In our approach here we intend to proceed somewhat differently. A 
massive particle will here be described entirely in terms of ten Poincar6 
covariant degrees of freedom. The parameters representing these degrees 
of freedom will be identified with the components of the four-momentum 
vector PY=(E, fi) and the four-angular momentum tensor Mkt=(K, J). 
These quantities written out in the four-vector form have the advantage of 
transforming linearly (but inhomogeneously) under the action of the 
Poincar6 group. This is the reason they are so appropriate for explicit 
calculations. As we shall see in the next section, some of these quantities 
do not even need to have any direct physical meaning. Most of the "real" 
physical observables become, according to our definitions and identifica- 
tions, derived objects constructed out of the ten Poincar6 covariant degrees 
of freedom represented by PY and M t'l. One of the consequences of our 
approach is that the second equality in (1.1) cannot be valid in general. We 
obtain a new concept which we call the speed and which does not always 
coincide with the notion of velocity as defined in (1.1). 

In the third section using quantum mechanical commutation relations 
for the Poincar~ algebra and a relativistic version of the correspondence 
principle we derive equations of motion for two interacting inseparable 
particles forming a closed composite system. No fields are involved in the 
description. Finally, utilizing what we call our dynamical principle we 
solve a very simple example (Bette, 1980). We wish also to emphasize that 
the main result (the dynamical relativistic principle) is the same as in our 
previous paper (Bette, 1980). The way of reasoning is,-however, somewhat 
different and we hope clearer. The identifications of physical observables 
are also slightly changed. From the nortrelativistic point of view these 
changes do no matter but for the internal consistency of the exposition 
they seem to be necessary. 

2. CONNECTION BETWEEN POINCARE D E G R E E S  OF F R E E D O M  
AND PHYSICAL OBSERVABLES: NOTATIONS, RELATIVISTIC 

FORMULAS, DEFINITIONS, AND IDENTIFICATIONS 

In order to fix ideas we introduce Poincar6 degrees of freedom (Pdf) 
at the very beginning. These are represented by two polar vectors t7, K, an 
axial vector J, and a scalar E. Using four-tensor notation we may also 
write 

Mkt--(K,J), Pj=(E,fi) (2.1) 
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For visualization we shaU, however, often use the three-vector notation. 
The action of the Poincar6 group on the introduced quantities is specified 
by the following rules. 

Rotation: 

K'=K+(I+�88215189215 (2.2) 

J'=J+(l+�88215189215 (2.3) 

ff =if+ (1 + �88 [ ~ •  �89215 ] (2.4) 

E' = E  (2.4a) 

with f f=2htan(a/2)  being an axial rotation vector h .h= 1, n=2 tan (a /2 )  
and with a denoting the angle of rotation. 

Alternatively we may also write 

R'=Rcosa+(hXR)sina+2~(h.R)sin2(a/2) (2.5) 

where/~ symbolizes any of fi, K, J above. 
Boost: 

~"=7(K'+  ( f •  [ 7/(1 + y ) e z ] 6 ( 6 . g ) }  (2.6) 

f'='y{]-(Kxe)/c-[y/(l+v)eE]~(e.Y)) (2.7) 

E'=7( E-e.fi) (2.9) 

with 7=(1 -v2/c2) -1/2, 6.6=v 2 and ~3=6/v. 

Space Translation: 

K' =K+A E/e (2.10) 

J'-~J +( axfi) (2.11) 

fi '=fi  (2.12) 

E' = E  (2.13) 

with .~ being a translation vector. 
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Time Translation: 

K ' =  K +  ct/3 (2.14) 

J ' = J  (2.15) 

fi '=/3 (2.16) 

E ' = E  (2.17) 

with t representing the lapse of (external) time. Transformation parameters 
are ~3 (a polar vector), ~ (an axial vector), A (a polar vector), and ct (a 
scalar)-- ten parameters altogether, i.e., as many as Pdf. 

For later use we construct following vectors and scalars out of Pdf: 

- -  d e f  - -  

R = c K / E  (2.18) 

- -  de f  - -  
L = R Xfi  = cK, X /3 /E  (2.19) 

d e f  

a = cZ/3/E (2.20) 

ffdef E 
= mc 2 ( J - L )  (2.21) 

def  - 
So = ( J ' / 3 ) / m c = c (  S ' / 3 ) / E  (2.22) 

w i t h  m = ( E 2 / c  4 - p 2 / c 2 ) 1 / 2 .  

It can easily be seen that S o and S are not affected by space or time 
translations whereas under boosts and rotations they transform like E and 
/3, respectively. 

More definitions: 

g _  e 2 - _ - e 

p •  
m2c 2 

(2.23) 

/ ~ f j +  p2 _ _ -- E i f ( i f ' J )  (2.24) 
- ~ c 2 J + ( P •  )mTc3 m2C 2 

It may even here easily be seen that ~,/7 are not affected by space or time 
translations whereas under boosts and rotations they transform like K and 
.L respectively. 
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From (2.21) we see that f may be decomposed into an "orbital" and 
an "intrinsic" part in a Poincar6 covariant way according to 

J =  (1 - -  c2p21E 2)'/2 g+ L (2.25) 

Inserting (2.19) and (2.25) into (2.23) and (2.24) we get 

1 @= (#xg) 
mc 

E g : # -  [ - -}3-(s.#)] 

(2.26) 

(2.27) 

In the special case when m--->O from (2.22), (2.25), (2.26), and (2.27) we 
obtain 

Mq=(K,L )=(g,c(gXff}/E) (2.28) 

#xE=O 

So= E ( S ' # )  =s  (1/2 twistor norm) 

(2.29) 

(2.30) 

S= -~c2 fi ( S" ff ) = s c#E (2.31) 

Note that in this case we have SoSo--S'S=sksk=o. Notice also that 
(massless case) the degrees of freedom represented by ~ @,/7 and intro- 
duced by means of our original Pdf represented by J, K, #, and E (massive 
case) now decouple from their definitions forming completely new and 
independent quantities. 

The concept of a massless spinning classical particle obtained as a 
limiting case of a massive spinning relativistic particle in the way indicated, 
i.e., the concept of a massless classical particle with degrees of freedom 
given by K,#, and s has been previously introduced by Penrose (1968,1972) 
in the context of twistor theory. Note that s is a Poincar6-invariant 
pseudoscalar. It is also invariant with respect to conformal transformations 
[which we do not discuss in this paper (Penrose, 1968)] of K andfi (m=0).  

We make now the following identifications: We identify # with the 
linear momentum of a free particle, E with the energy of a free particle, J 
with the total angular momentum of a free particle, /~ with the orbital 
angular momentum of a free particle, S with the internal angular momen- 
tum of a free particle, 

-~ K ==~=cK/E + tc2#/ E= R + tff 
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with the position vector of a free particle, and m with the inertial mass of a 
free particle. 

Notice that here we have d~/dt--f f ,  which is quite similar to (1.1). As a 
digression we here mention that throughout this paper for explicit calcula- 
tions we have utilized the four-tensor notation with the following conven- 
tions: 

M~~ Mo~ = - M,,o = - M ~  E =  (K~, K2, K3) 

-P'~=P~,=P,~, e ~  ) (2.32) 

e[aBo ] =Carla, e321 = 1, P i P  i =m2c 2 

goo =gOO = _g,~a = _g ,~  = 1, gik = 0  if i ~ k  

Square brackets around the sub- or superscripts denote antisymmetrization 
and summation convention is assumed throughout. A massive free particle 
characterized by the Pdf as discussed above defines its own proper (inter- 
nal) time r We introduce a typical intrinsic time scale associated with such 
a free particle: 

dcf (1 -I'S2)~ 
r 0 = 2 (2.33) 

mc 2 

where s 2.~- S .  S -  SoS 0 -~ - s is i  and m = ( E 2 / c  4 _p2/c2)1/2 ,  wi th  ~ Planck's 
constant. 

Let us now assume that a free particle may in its own rest frame with 
respect to its proper time and relative its own center of energy be regarded 
as composed of (in the simplest case) two interacting parts: 

O=K=K1(r  

-O=fi=fil(,r ) + fi2('r ) 

mc2=. E =  El(,r ) + E2(,r ) (2.34) 

The splitting as it stands above is completely arbitrary, i.e., it is a 
functional of ten arbitrary functions of r. Nevertheless the decomposition 
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is covariant with respect to the Poincar6 group because in the four-tensor 
notation using the linearity of such a representation we may write 

MJk= M~('r ) + M/2~('r ) 

) + ) (2.35) 

In order to unambiguously (for a given ff and m) evaluate the ten 
functions of �9 in the linear splitting above we need some kind of a 
dynamical principle. This will be given in the next section. First let us 
make the following (compare the free-particle case) identifications: We 
identify/~i with the instantaneous linear momentum vector of the ith 
interacting part of the composite free particle relative to the rest frame of 
the latter; E i with the instantaneous energy of the ith interacting part of 
the composite free particle relative to the rest frame of the latter; ,~ with 
the instantaneous total angular momentum vector of the ith interacting 
part relative to the center of energy of the total system in its own rest 

def 
frame; ~ = cKi/E ~ with the instantaneous position vector of the ith 
interacting part relative to the center of energy of the total system in its 

- -  clef 
own rest frame; L i ---~ • with the instantaneous orbital angular 
momentum vector of the ith interacting part relative to the center of 

energy of the total system in its own rest frame; ~ def E~2 ( J i -  Li) with 
u l 

the instantaneous intrinsic angular momentum vector of the ith interacting 
part of the composite free particle relative to the rest frame of the latter. 
Here i -  1,2. The term "instantaneous" refers to the proper (intrinsic) time 
associated with the total system. 

Note that the instantaneous (inertial velocity) vector 

~=c%/Ei  (2.36) 

is not in general equal to 

dof a6 
= d--~ (2 .37)  

The vector ~ will in the sequel be called the speed vector of the ith 
interacting part of the composite system. 

3. THE DYNAMICAL PRINCIPLE 2 

In relativistic quantum physics the Pdf associated with a free particle 
become operators obeying the very well known rules for the Poincar~ 

2In this section in order to simplify computations we sometimes put h~- 1 and c--  1. 
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algebra: 

[ 3~lij,)t~ltk]=2i(gtiJ~ilk +gkIi~,jlt) (3.1) 

The splitting in (2.34) is now given by 

/;' =/~])(~') +/~)(~-), .,14'* = _/hr~l~ ( ~" ) + )1~r ( ~- ) (3.2) 

where z is the proper time parameter of the free composite system. Further, 
we assume here that the "Pdf" operators corresponding to the ith interact- 
ing part of the composite free particle, obtained by the splitting of the 
"Pdf" operators of the latter according to (3.2), also obey the commutation 
rules in (3.1) for every value of the proper (intrinsic) time and that "Pdf" 
operators corresponding to the first interacting part commute with the 
"Pdf" operators corresponding to the second interacting part. 

We recall that the squared mass and squared spin operators of a free 
(composite or simple) particle commute with all operators in its Poincar6 
algebra, i.e., with all "Pdf" operators obeying (3.1). They are explicitly 
given by 

r~2= fiiPi/m 2 

g2 = _ ~i~/= _ (1/4)eijktei,,rfi"h~lmnfitl~lJk/m 2 (3.3) 

w h e r e  m 2 is the eigenvalue of/~iff. 
We assume that there always exists a Poincar6-invariant Hamilton 

operator associated with a free (possibly composite) particle and with its 
proper (intrinsic) time. The Hamilton operator is then always a function of 
the operators in (3.3): 

/_~ =/~(rh2, ~2) (3.4) 

Imitating nonrelativistic dynamics we obtain relativistic quantum mechani- 
cal equations of motion for operators describing the two inseperable 
interacting parts forming the free composite system (Bette, 1980): 

^ i k  

^ dMia) --i[ 1~, &'I(~ak)] 
dff(/a) - i [  /-I, /~/)], ~'o d'r ---- r~ d~" -- 

(a) = (1), (2) (3.5) 
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r 0 is a time scale introduced in (2.33) and S 2 is a fixed eigenvalue of the 
operator g2 in (3.3). r denotes the lapse of the proper (internal) time of the 
total particle. 

Let us choose a very simple form for the "Hamiltonian" in (3.4) 
(Bette, 1980): 

/~-~-/'~/2 "F $2  (3.6) 

Performing the commutations on the fight-hand side of (3.5), neglecting 
terms of order h 2, and letting operators become the usual (c) numbers we 
get the following set of (quasi) classical dynamical equations of motion: 

r~ d--~'- = 2S'eijktPtga~k'A / m  

dM~al~ 44.. p ~j[apb] ..l_ g vi , ,  It/t jk~ltapb] /~.~ 
r o ~  = m2 j r ( l )  . . . .  ijkl ~'* 6(1) 1 " "  

..1_ 2s iEi jk ip l (  g~k~j]b ..l_g~l~Mk]a)/m (3.7) 

P(~) = ea  - e(~), M(a2~ -~ Mab - n~l~ 

The procedure as described above constitutes our dynamical principle as 
referred to in the last section and in the Introduction. The dynamical 
principle fixes the splitting of the free composite particle. The decomposi- 
tion is not arbitrary any more, depending entirely on the form of the 
Hamilton operator in (3.4). 

If we place an orthonormal space tetrad at the center of energy of the 
total system in its own rest frame--i.e. ,  if we put 

M 21 =M13 = M a o = o ,  M32 =s, i .e . ,  So=O 

P o = m ,  ~=( )  

then the equations in (3.7) become 

de?) de L 
d--7 =o, =o, 

and S =  (s,0,0),  

(3.8) 

- 2sP~),  dP~l) - -  = "ro---~ * =2sP~]) 

- - - _ _ -  �9 dM(]~ dMy  2 e(L, ~162 
r~ dr  m 

dMr - 1 - s  2 3 20 
"ro-----d~- ~ = 2  ' m PO) -  2sMo)  

d M ( ~  - - 0  

dr  

- - l - - s  2 2 3O P(1) + 2sMo)  (3.9) 
m 
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Putting 

Betm 

tOo=2S/Zo, -p(l~)=pa--_ltyua,  I - l~ ~rBo " a -- -~aBo"*(O 

_ _  o r 0  K . - M ; o ,  P(l~ = E=/~y  (3.10) 

where # is the rest mass of particle number 1 and 3,=(1 - u 2 )  -1/2 we may 
rewrite (3.9) in a more transparent way: 

A=o, J=o, 

K2 ----P2 + tOO K3, P 2  = - -  w0P3 

K3 =P3 - tOo g 2 ,  lj3 -- + tOoP2 

2 

(3.11) 

with the dot denoting derivation with respect to the proper time. The 
solutions of (3.11) are 

P2 ---- .4 COS too ~" -- B sin too ~" 

P3 = A sin too'r + B cos too ~ 

 )co o: 
K 3 = C sin too ~" + D cos too z (3.12) 

Pl ---- const 

2 
K 1 = - ~ o p l a ' + F  

E =  const 

J =  const 

Choosing initial values in a suitable way the solutions above become 

P2 =pcos  r P3 =psinw0~ 

K2 = ( P  l+S2ms + D )  sinto~ K3 ---Dcosto~ 

Pl =0 ,  K 1 =0 ,  J3 =0 ,  ,]2 =0 ,  Jl = 0  

E = ( g  2 +p2)  1/2 

(3.13) 
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In case s>>l, u2>>~0013, u3>>60012 [where l i i=2,3 characterize typical dis- 
tances between the center of energy of the total composite system in its 
own rest frame and the ith interacting part and where ui denote compo- 
nents of the inertial velocities as defined in (2.36)] we note from (3.11) that 
the speed and the velocity vectors coincide, i.e., we have 

K21E 2 ~----U2, I~31E 3 ~--"u3, I ~ l l E  1 -~0 (3.14) 

If in addition u i <~<(C than we get from (3.11) a very simple approximative 
solution according to which one of the (sub)particles performs a spiral 
motion squirming inwards, while the other is spiralling outwards in the 
opposite direction. 

The general case is--because of the existence of the two velocity 
concepts (inertial velocity and noninertial speed)--more intricate and will 
be discussed more fully elsewhere. 

4. CONCLUSIONS AND REMARKS 

It is more natural to study the dynamical principle formulated in this 
paper using the theory of twistors (Penrose, 1968, 1972,1975; Hughston, 
1979). Some difficulties appear, however. The twistor description increases 
the number of degrees of freedom due to the underlying conformal 
symmetry. These additional degrees of freedom related to the "internal" 
symmetries encountered in elementary particle physics are hard to inter- 
pret on the classical level. On the other hand, the possibility arises of 
treating a massive spinning free particle as composed of two (bounded) 
massless interacting parts. The procedure in this case is rather straightfor- 
ward. In a forthcoming paper we intend to present such calculations. 

N O T E  A D D E D  IN P R O O F  

The parameter in our "equations of motion" cannot, by physical 
reasons, be identified with the proper time of the total system precisely 
because of (2.36) and (2.37). The parameter constitutes only an (as yet 
unknown) function of the proper time t. t may, in fact, be determined as a 
function of ~" if we require 

Ild  c lffil 

I am indebted to Prof. B. Laurent, Dr. S. Flodmark, and Prof. I. 
Fischer-Hjalmars for pointing this out to me. 
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